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1. INTRODUCTION

Limit cycle (periodic or oscillatory) behavior is observed in many physical and biological
systems. The problem of determining when a non-linear dynamical system exhibits limit
cycle behavior has been of great interest for more than a century. Researchers have been
devising techniques by which the existence of limit cycle behavior in non-linear systems can
be established (see, e.g., references [1}4]). The Poincare'}Bendixon theorem provides
a rather easily applicable technique by which the existence of limit cycle behavior in planar
(two-dimensional) non-linear systems can be established (see, e.g., references [1}4]). This
theorem, however, is applicable only to planar systems since it is based on the Jordan curve
theorem (see, e.g., references [5, 6]), which holds for simply connected curves in a plane.
There are generalizations of the Poincare'}Bendixon theorem for three- or higher-
dimensional non-linear systems (see, e.g., references [7, 8]). These generalizations, however,
are inapplicable to most systems of interest. Another technique by which the existence of
limit cycle behavior can be established is the Poincare'}Andronov}Hopf bifurcation
technique (see, e.g., references [9}14]). This technique can be applied to planar or
higher-dimensional non-linear systems, however, it is computationally demanding. There is
yet another technique, known as the describing function method, by which the existence of
limit cycle behavior in non-linear systems can be predicted (see, e.g., references [15, 16]). The
describing function method is mostly used for non-linear control systems and presently is
seldom used. This technique can lead to erroneous results: (1) it can fail to predict existing
limit cycles (see, e.g., reference [17]), and (2) it can spuriously predict non-existing limit
cycles (see, e.g., reference [18]).

Considering the di$culties of existing techniques by which the existence of limit cycle
behavior in three- or higher-dimensional non-linear systems is established, it is desirable to
devise techniques which predict such behavior conveniently. In references [19, 20],
a systematic procedure is presented by which the existence of limit cycle behavior
(self-pulsation) in lasers can be established. This procedure is applicable to planar or
higher-dimensional non-linear systems and is computationally straightforward. In order to
apply this procedure, it is necessary to have the state-space representation of the system.
Having such a representation, (1) the boundedness of the system states is established, and (2)
the system parameters are chosen so that all equilibrium points of the system are
destabilized. The boundedness of the system states and the instability of its equilibrium
points imply that the system can have periodic, quasi-periodic, or chaotic behavior. When
the system states are periodic, the system has limit cycle behavior.
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In this note, the procedure in references [19, 20] is applied to an important
three-dimensional Lotka}Volterra system to determine the conditions under which this
system has limit cycle behavior (periodic solution). Lotka}Volterra systems have been of
interest as they have been studied extensively by researchers (see, e.g., references [21}29]
and the references therein).

2. A LOTKA}VOLTERRA SYSTEM

Lotka}Volterra systems model the dynamics of interacting species. These systems have
been studied by many researchers (see, e.g., references [21}29] and the references therein).
The Lotka}Volterra system considered in this note is the following three-dimensional
system (see reference [26]):
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A problem of interest is to determine when system (1) exhibits limit cycle behavior (see,

e.g., references [26, 27]). Thus, the problem to be solved is:

Problem P. Determine the positive parameters r
1
, r

2
, r

3
, and a for which system (1) exhibits

limit cycle behavior.

In this note, Problem P is solved by applying the procedure in references [19, 20].
A useful property of system (1), which is used in solving Problem P, is proved next.
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The useful property to be proved is that the non-negative orthant R3
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3. LIMIT CYCLE BEHAVIOR

In this section, Problem P is solved by applying the procedure in references [19, 20],
according to which two steps should be taken: (1) the boundedness of the system states
should be established, and (2) all equilibrium points of the system should be destabilized.
The solution of Problem P is a set of parameters r

1
, r

2
, r

3
, and a for which system (1)

exhibits limit cycle behavior. Having this set obtained, an example is given by which the
existence of limit cycles is corroborated.

3.1. BOUNDEDNESS OF SYSTEM STATES

In order to show that the state N
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a bounded function of time by which the boundedness of the states follows.

Theorem 3.1. ¸et 0(c(1 be an arbitrary constant number. If

r
2
'

r
3
4

, r
1
'

r2
2

(1!c) (4r
2
!r

3
)
, (4a, b)

then <( ) ) is a bounded function of time, and so is the state N
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for all t*0. It can be easily veri"ed that the maximum value of the quadratic function
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The principal minors of Q are
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Finally, having < ( ) ) a bounded function and the state N
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i"1, 2, 3, it follows from equation (3) that each N
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3.2. DESTABILIZATION OF EQUILIBRIUM POINTS

In order to destabilize the equilibrium points of system (1), they should be located "rst, in
particular, those that are in R3

`
, because by Lemma 2.1, the solution of system (1) is in R3

`
.
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equations (12). K
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Proof. The instability of an equilibrium point of a system is decided upon by the
eigenvalues of the coe$cient matrix of the linearized model of the system around that point,
namely, the Jacobian matrix. The Jacobian matrices corresponding to the equilibrium
points X
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are, respectively,
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It can be easily veri"ed that the eigenvalues of the matrix J
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solutions of the following cubic equation:
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By the Routh}Hurwitz test (see, e.g., references [30, 31]), it is concluded that two solutions
of equation (16) are in the open right-half complex plane, i.e., the equilibrium point X

```
is

unstable, if and only if inequality (14) holds. K

Theorems 3.1, 3.3 and 3.4 provide a solution for Problem P. According to these theorems,
if the positive parameters r
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and a satisfy inequalities (4) and (14), then the solution of

system (1) will not settle at a constant vector. The solution will be a time-varying function of
time which will wander in R3

`
and when it is a periodic vector, the system has limit cycle

behavior.



Figure 1. Time histories of t>N
1
(t) (largest amplitude), t>N

2
(t) (medium amplitude), and t>N

3
(t)

(smallest amplitude). These time histories are periodic functions. That is, the system exhibits limit cycle behavior.
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3.3. EXAMPLES

In this section, two examples are given to show the existence and non-existence of limit
cycle behavior in system (1).

(1) In the "rst example, it is shown that if inequalities (4) and (14) are satis"ed, then
system (1) exhibits limit cycle behavior. Let

c"0)25, r
1
"2, r

2
"3, r

3
"4, a"10, (17)

in system (1). For these values of the parameters, it can be easily veri"ed that inequalities (4)
and (14) hold. Thus, system (1) can have limit cycle behavior. Indeed this is the case.
Numerical simulations of system (1) attest the existence of limit cycle behavior; see Figure 1,
where the time histories tCN

1
(t), tCN

2
(t), and tCN

3
(t) are shown. These time histories

are periodic functions.
(2) In the second example, it is shown that if inequality (14) is not satis"ed, i.e., if the
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"(1, 1, 1) is locally stable, then system (1) does not exhibit limit cycle
behavior. Let the parameters c, r

1
, r

2
, and r

3
be the same as those in equation (17), and let

a"5. For these values of the parameters, it can be easily veri"ed that inequality (14) does
not hold, and hence the equilibrium point X
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system (1) show that the solution of the system converges to X
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, no matter what the
initial conditions N
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limit cycle behavior.



Figure 2. Time histories of t>N
1
(t) t>N

2
(t), and t>N

3
(t). As tPR, the function N

i
(t) tends to 1 for all

i"1, 2, 3. That is, the system does not exhibit limit cycle behavior.
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4. CONCLUSIONS

In this note, a procedure is presented by which the existence of limit cycle behavior in
three or higher-dimensional nonlinear systems can be established. The procedure has two
steps: (1) the boundedness of the system states is established; and (2) all equilibrium points of
the system are destabilized. These steps are applied to a three dimensional Lotka}Volterra
system to determine a set of parameters for which this system exhibits limit cycle behavior.

The procedure by which the existence of limit cycle behavior in non-linear systems is
established is conveniently applicable to planar or higher-dimensional systems. However,
establishing the boundedness of the system states (step 1) may be di$cult for some systems.
Moreover, this procedure does not exclude the possibility of quasi-periodic or chaotic
behaviors.
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